

Effect of Increased Traffic on Controller Workload

Paul U. Lee*, Nancy M. Smith, Joey S. Mercer*, Thomas Prevot*, Everett A. Palmer

*San Jose State University NASA Ames Research Center Moffett Field, CA 94035

Introduction

NASA HF Symposium

- Controller workload has been a focal topic in air traffic management research over the years
 - e.g. Stein, 1985; Mogford, Guttman, Morrow, & Kopardekar 1995; Manning, C. A., Mills, S. H., Fox, C. M., Pfleiderer, E., & Mogilka, H., 2001
 - Workload considered a key bottleneck to capacity increase
 - Multiple factors contribute to controller workload
 - e.g. aircraft count, amount of air-ground communication, number of altitude clearance, number of unresolved conflicts, etc.
 - Aircraft count is one of the better predictors of controller workload

Nature of Subjective Workload

NASA HF Symposium

- Past research focused on identifying factors contributing to workload
 - Factor analysis to identify the contributing factors
 - Multivariate regression to fit the data
- This approach doesn't seem to capture the subjective experience of workload increase
 - Controllers report low/moderate workload ratings for busy traffic problems, but...
 - Report high workload ratings with few added tasks and/or off-nominal situations at some "breaking point"
- A controller perceives the workload to be low until the traffic and associated task load increase to reach a critical point. From this point, the workload increases much faster with each added task
- Non-linear relationship exists between objective metrics (e.g. traffic count, number of clearances) and subjective workload

Traffic Load Test

NASA HF Symposium

- To examine the non-linear nature of workload, traffic needs to be near maximum threshold
- Traffic Load Test
 - Informal studies as a precursor to testing DAG-TM concepts
 - Manipulated aircraft count to determine critical traffic levels at which traffic becomes unmanageable
 - As hypothesized, the workload increased gradually until a critical traffic level after which the traffic quickly became unmanageable
 - Feedback from the controllers further supported the non-linear nature of subjective workload

Simulated Airspace

NASA HF Symposium

Traffic Load Test: Single-Sector Airspace

NASA HF Symposium

NASA Ames Airspace Operations Laboratory (AOL)

NASA HF Symposium

Oct 18-20, 2004

"Pseudo-pilot" Room

Traffic Load Test Goals

NASA HF Symposium

- Goal is to determine maximum aircraft count in Amarillo & Ardmore sectors
- Results served as index value for establishing traffic levels for DAG-TM simulation in June
- Expect maximum level within these sectors could vary greatly due to differences in traffic complexity:
 - Amarillo (in our scenarios) has primarily level flight overflights
 - Ardmore has crossing streams of metered arrivals, overflights (E-W and N-S) and DFW departures

Test Procedures

NASA HF Symposium

Oct 18-20, 2004

Participants

- 2 FPL controllers
- 2 retired controllers / supervisors

Scenarios

- 30 minute scenarios
- Traffic
 - Ramps up for 15 minutes
 - Sustained at maximum aircraft count for 10 minutes
 - Drops off gradually for the last 5 minutes
- Simulation of single-sector traffic scenarios
 - Two "worlds" run in parallel
 - Supervisor/ghost controllers feed the traffic to FPL controllers

Test Procedures

NASA HF Symposium

Oct 18-20, 2004

Procedures

- Training/familiarization with tools, traffic levels, and procedures
- Discuss the working definition of "unmanageable traffic"
- Data collection runs
 - Run initial sector problem at level determined in training
 - After running each scenario, controllers rate load relative to threshold traffic
 - Next scenario will increase or decrease traffic based on joint assessment by controllers and supervisors
 - This process continues until threshold traffic is established

What does unmanageable mean?

NASA HF Symposium

Oct 18-20, 2004

- Loss of situation awareness
- Loss the "flick"
 - Having the flick is having the picture; you have the situation, you know the situation, have a plan, are working proactively, supervisor, other controllers notice, pick up on language, body language, and provide help.
- Compromised safety
- One more problem will put you down the tubes
 - Even something as simple as an altitude request
- Potential Symptoms
 - handoffs are late
 - can't find checking-in flights easily
 - reactive instead of proactive
 - don't know where planes are
 - over-reliance on tools
 - situation startles you
 - service goes out the window

Remarkable agreement among participants on what constitutes unmanageable traffic during data collection

Results: Ardmore Sector Aircraft Counts

NASA HF Symposium

NASA HF Symposium

Data Run 2: ATC Feedback – Definitely Unmanageable

NASA HF Symposium

Data Run 3: ATC Feedback - Maximum Threshold

NASA HF Symposium

Combined Plots: Owned A/C Count

NASA HF Symposium

Further Insights from Subsequent CE 5 Study

NASA HF Symposium

- CE 5 Free maneuvering concept
 - Mixed airspace of
 - Controller-managed aircraft (current day)
 - Free maneuvering aircraft
 - Minimal controller involvement
 - Separation responsibility to the pilots
 - Results
 - Controller workload correlated mostly with managed portion of the traffic
- To gain further insights into the relationship between workload and traffic level
 - Examine controller workload and managed portion of the traffic –
 i.e. ignore free maneuvering aircraft in the analyses

NASA HF Symposium

AMA: Threshold Traffic from Load Test

NASA HF Symposium

T1 Traffic Level - Amarillo Sector

10 min Peak Average: ATC_owned = 21; Geo_sector = 22

Comparison of Aircraft Count & Workload

NASA HF Symposium

Oct 18-20, 2004

Aircraft Count

ATC Workload

Scatter Plot: Workload vs. A/C Count

NASA HF Symposium

Summary

NASA HF Symposium

- Controllers / supervisors have good intuitive understanding of "unmanageable" traffic
- Subjective workload is non-linear to increase in aircraft count
 - Likely non-linear relationship with other objective task load metrics (e.g. number of conflicts, handoffs, etc.)
 - Implications
 - Workload cannot be linearly extrapolated from measured workload
 - Perceived workload is not interchangeable with objective task load
- Further analyses needed on workload vs. other task load metrics (e.g. Number and types of clearances, task duration)

